首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4594篇
  免费   363篇
  国内免费   3篇
  2023年   11篇
  2022年   11篇
  2021年   78篇
  2020年   48篇
  2019年   60篇
  2018年   62篇
  2017年   72篇
  2016年   131篇
  2015年   212篇
  2014年   217篇
  2013年   299篇
  2012年   384篇
  2011年   378篇
  2010年   256篇
  2009年   225篇
  2008年   294篇
  2007年   322篇
  2006年   296篇
  2005年   248篇
  2004年   265篇
  2003年   235篇
  2002年   215篇
  2001年   44篇
  2000年   37篇
  1999年   56篇
  1998年   69篇
  1997年   45篇
  1996年   37篇
  1995年   47篇
  1994年   39篇
  1993年   35篇
  1992年   28篇
  1991年   27篇
  1990年   27篇
  1989年   19篇
  1988年   14篇
  1987年   13篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1974年   3篇
  1972年   5篇
  1971年   3篇
  1966年   4篇
排序方式: 共有4960条查询结果,搜索用时 31 毫秒
81.
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.  相似文献   
82.
83.
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.  相似文献   
84.
85.
Acoustic phenotypic variation is of major importance for speciation and the evolution of species diversity. Whereas selective and stochastic forces shaping the acoustic divergence of signaling systems are well studied in insects, frogs, and birds, knowledge on the processes driving acoustic phenotypic evolution in mammals is limited. We quantified the acoustic variation of a call type exchanged during agonistic encounters across eight distinct species of the smallest‐bodied nocturnal primate radiation, the Malagasy mouse lemurs. The species live in two different habitats (dry forest vs. humid forest), differ in geographic distance to each other, and belong to four distinct phylogenetic clades within the genus. Genetically defined species were discriminated reliably on the phenotypic level based on their acoustic distinctiveness in a discriminant function analysis. Acoustic variation was explained by genetic distance, whereas differences in morphology, forest type, or geographic distance had no effect. The strong impact of genetics was supported by a correlation between acoustic and genetic distance and the high agreement in branching pattern between the acoustic and molecular phylogenetic trees. In sum, stochastic factors such as genetic drift best explained acoustic diversification in a social communication call of mouse lemurs.  相似文献   
86.
Molecular chaperones are crucial for the correct folding of newly synthesized polypeptides, in particular, under stress conditions. Various studies have revealed the involvement of molecular chaperones, such as heat shock proteins, in diapause maintenance and starvation; however, the role of other chaperones in diapause and starvation relatively is unknown. In the current study, we identified two lectin‐type chaperones with calcium affinity, a calreticulin (LdCrT) and a calnexin (LdCnX), that were present in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) during diapause. Both proteins possessed an N‐globular domain, a P‐arm domain, and a highly charged C‐terminal domain, while an additional transmembrane domain was present in LdCnX. Phylogenetic analysis revealed distinction at the order level. Both genes were expressed in multiple tissues in larval and adult stages, and constitutively throughout development, though a starvation response was detected only for LdCrT. In females, diapause‐related expression analysis in the whole body revealed an upregulation of both genes by post‐diapause, but a downregulation by diapause only for LdCrT. By contrast, males revealed no alteration in their diapause‐related expression pattern in the entire body for both genes. Fat body‐specific expression analysis of both genes in relation to diapause revealed the same expression pattern with no alteration in females and downregulation in males by post‐diapause. This study suggests that calcium‐binding chaperones play similar and possibly gender‐specific roles during diapause.  相似文献   
87.
Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra‐Conserved Elements (UCEs) with supermatrix (RAx ML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum‐likelihood approaches, an artifactual mid‐point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.  相似文献   
88.
The parental food compensation hypothesis suggests that parents may compensate for the negative effects of parasites on chicks by increased food provisioning. However, this ability differs widely among host species and may also depend on ecological factors such as adverse weather conditions and habitat quality. Although weed management can improve habitat quality, management measures can bring about a temporary decrease in food availability and thus may reduce parents’ ability to provide their nestlings with enough energy. In our study we investigated the interaction of parasitism and weed management, and the influence of climate on feeding rates in a Darwin’s tree finch species, which is negatively impacted by two invasive species. The larvae of the invasive parasitic fly Philornis downsi ingest the blood and body tissues of tree finch nestlings, and the invasive Blackberry Rubus niveus affects one of the main habitats of Darwin’s tree finches. We compared parental food provisioning of the Small Tree Finch Camarhynchus parvulus in parasitized and parasite‐free nests in three different areas, which differed in invasive weed management (no management, short‐term and long‐term management). In a parasite reduction experiment, we investigated whether the Small Tree Finch increases food provisioning rates to nestlings when parasitized and whether this ability depends on weed management conditions and precipitation. Our results provide no evidence that Small Tree Finches can compensate with additional food provisioning when parasitized with P. downsi. However, we found an increase in male effort in the short‐term management area, which might indicate that males compensate for lower food quality with increased provisioning effort. Furthermore, parental food provisioning was lower during rainfall, which provides an explanation for the negative influence of rain on breeding success found in earlier studies. Like other Darwin’s finches, the Small Tree Finch seems to lack the ability to compensate for the negative effects of P. downsi parasitism, which is one explanation for why this invasive parasite has such a devastating effect on this host species.  相似文献   
89.
Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13C and δ15N values (i.e., result in artificially lower δ13C and δ15N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific “C:N thresholds” provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13C values were observed for known regional movements of DUS and RAG (δ13CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13C and δ15N values to examine elasmobranch ecology.  相似文献   
90.
The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号